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F-31062 Toulouse Cgdex, France 
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Abstraa Harper's equation. a model for Bloch electrons in a magnetic field, has a band 
spectrum when the dimensionless magnetic field ,8 is a rationd number pfq. This paper 
considers the definition of generalized Wannier functions, which can be used to represent the 
Bloch bands of the spectrum of the rational Harper equation by means of a von Neumann 
lanice. One representation of these Bloch bands can be extended to the imtional case. and 
taking matrix elements in this basis leads to a renormaliwtion-group vansformation acting on 
the h i l t o n i a n ,  The results in the present paper considerably extend a previous analysis of this 
rrnomalization-group vmsformation, in thal the formalism is suitable for systematic calculations 
of the renormalized Hamiltonian, and that the transformation preserves the rotational symmetry 
of the Hqper Hamiltonian in phase space. 

1. Introduction 

1.1. Physical background 

Harper's equation 

@"+I+ @ n - ~  + 2cosfZnBn + 6 ) @ n  = E@n (1.1) 

is a Schrodinger equation in the form of a difference equation with periodic coefficients. It 
is a realistic single-band model for an electron moving in a plane, with a spatially periodic 
potential, and a uniform magnetic field perpendicular to the plane. It was originally derived 
[ I ]  using the Peierls substitution [Z], and it can also be obtained by taking matrix elements 
of the Hamiltonian in a Landau level basis [3,4]. In the Landau level picture, the parameter 
,9 is given by ,9 = h j e B A ,  where B is the magnetic field, A is the area of the unit cell, h 
is the Planck constant and e is the electron charge. In the Peierls substitution picture, ,9 is 
given by the reciprocal of this quantity. Throughout this paper it  will be assumed that (1.1) 
represents a perturbed Landau level. 

Harper's equation is of considerable mathematical interest because of the structure of 
its spectrum. When p is the ratio of two integers, there is a band spectrum with q non- 
overlapping bands, with dispersion relations €, (k ,  6) (where k is the Bloch wavevector and 
v an index labelling the band). When p is irrational, the spectrum is a Cantor set of zero 
measure, with an intricate non-self-similar hierarchical structure, which was predicted by 
Azbel 1.51 and observed in numerical experiments by Hofstadter [6]. Various techniques 
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have been used to analyse the structure of the spectrum: methods which are applicable to a 
general class of models representing Bloch electrons in a magnetic field include semiclassical 
approaches [5,7-1 I ]  and renormalization-,mup methods [12-18]. There are also a variety 
of bounds and exact equalities which are specific to Harper’s equation and a small class of 
related models described by threeterm recursion relations [19-22]. This paper is a synthesis 
of two different renormalization-group approaches described in earlier papers 114,151 by 
the same author. The primary motivation for the work reported here was to deal with some 
technical difficulties with the method described in [15], which have been a barrier to further 
applications of this approach. 

The ideas developed in this paper will refer more naturally to another representation of 
the Hamiltonian corresponding to the Schrodinger equation (1.1) as a function of operators 
1 and 1; satisfying the canonical commutation relation. The Hamiltonian 

A = H ( i ,  1;) = Z(C0S 1; + cos i )  (1.2) 

is equivalent to (1.1) if it is quantized using the Weyl rule and if 

The r6Ie of the Weyl quantization rule in representing Bloch electrons in a magnetic field by 
Hamiltonians such as (1.3) is discussed in 1231, where it is shown that rotational symmetries 
of the crystal lattice are represented by rotational symmetries of the Hamiltonian in phase 
space. In this paper, the symbol h will be used for the physical Planck constant, and h for 
the dimensionless quantity 2x8. 

This paper will make extensive use of phase-space representations such as (1.2). and 
the following operators, which will be termed phase-space translation operators, will play 
an important r61e: 

?(x, P) = exp[i(Pi - x ~ ) / A ] .  ( 1.4) 

These operators have a non-commutative algebra 

and they are relevant to this problem because their algebra is of the same form as that of 
the magnetic translation operators introduced by Zak [241. 

As well as applying to Harper’s equation, the results will be applicable to a class of 
Hamiltonians which can be represented as a Fourier series, with coefficients Hnm: 

m m  m m  
A = H.,exp[i(m? - n j ) ]  = H , , ? ( ~ A , ~ A ) .  (1.6) 

n=-mm=-m n=-mm=-m 

The Fourier coefficients are assumed to decay rapidly as n, m + 00. 
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1.2. Discussion of earlier work 

This papcr is primarily a development of a renormalization-group method discussed in 1151. 
In this earlier paper it  is shown that the spectrum of Harper’s equation in the neighbourhood 
of a rational value ( p / q ,  say) of p can be approximated by quantizing the dispersion relations 
E&, 8 )  of the q bands of the rational spectrum, by means of the Peierls substitutions 
qk + f’, q8 4 p’. The canonical operators f’ and p’ have a renormalized Planck constant 
h‘ = Zrr,9’, which depends on the quantized Hall conductance integer M, of the band (the 
quantized Hall effect for this problem is analysed in [=I). The dependence of p‘ on M ,  
explains the ‘clustering rules’ discovered empirically by Hofstadter [6]. 

These results were derived by introducing a set of generalized Bloch states IB,(k, a)), 
which are defined for irrational p ,  and which are obtained from the rational Bloch states by 
varying the phase parameter 6 as a function of position. In the limit ,9 4 p / q ,  the matrix 
elements of the Hamiltonian in the basis of generalized Bloch states are the same as those 
of a renormalized Hamiltonian which is obtained by a Peierls substitution of the dispersion 
relation. 

There are a variety of difficulties with the method described in the earlier paper, which 
the calculations presented here overcome. 

(i) The method presented in [I51 cannot readily be adapted to calculate corrections to 
the lowest-order approximation, Herr - & ” ( f ’ / q ,  B’ /q ) .  

(ii) The phases of the Bloch states are arbitrary, and the results of the renormalization- 
group transformation depend upon the choice of these phases: it is necessary to quantify 
the effect of gauge transformations which change the relative phases of the Bloch waves. 

(iii) It is desirable to find a form of the renormalization-group transformation which 
preserves the four-fold rotational symmetry of the Harper Hamiltonian. 

This latter point is particularly important, because if the rotational symmetry is 
preserved, the spectrum is expected to be a Cantor set of measure zero, whereas if this 
symmetry is not preserved by the renormalization-group transformation, the spectrum could 
be a Cantor set of finite measure [14,15]. 

Another earlier paper [ 141 showed how the renormalization-group transformation can be 
set up in a way which naturally preserves the rotational symmetry of the Hamiltonian, using 
a generalized Bloch-state basis constructed out of Wannier functions translated throughout 
phase space to form a generalized von Neumann lattice. This calculation was restricted to 
the case where the quantized Hall conductance integer M, of the band is zero: this resviction 
arises because it is not possible to construct conventional Wannier functions when M, # 0 
[26]. The calculations presented here involve the construction of a von Neumann lattice of 
generalized Wannier functions, which can be defined for arbitraq values of M,. There are 
considerable technical complications because the construction of the von Neumann lattice 
is necessarily anisotropic, and the symmetry of the Hamiltonian is obscured at intermediate 
points of the calculation. 

1.3. Plan of paper and summary of new results 

This paper describes a refinement of the earlier calculations which is much more suitable 
for explicit calculation of the corrections to the renormalized effective Hamiltonian as a 
series in A@ = ,B - p / q ,  and which shows how the rotational symmetry of the Hamiltonian 
can be explicitly preserved by the renormalization-group transformation. The plan of the 
paper is as follows. 

In section 2, it is shown how the Bloch bands of the rational case can be characterized 
in a way which makes it possible to extend the definition of the Bloch states to irrational 
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values of ,3. It is shown that the Bloch bands of the rational dispersion relations can be 
derived from a set of N ,  normalizable functions, where N ,  is related to the quantized 
Hall conduction integer M, by the formula 1 = p N ,  + q M , .  Section 3 shows how these 
normalizable functions can be used to form a set of generalized Wannier states I @ f ) ) :  the 
Bloch waves are generated from these wannier functions by using translation operators 
of the form (1.4) to generate von Neumann lattices, and combining the states of the von 
Neumann lattices with the appropriate phases. 

Section 4 considers the calculation of matrix elements of the Hamiltonian and similar 
operators in the basis formed by the generalized Bloch states. These matrix elements 
are those of a difference operator in the Bloch wavevector k, with periodic coefficients. 
Ex licit formulae for the Fourier coefficients are obtained in terms of the matrix elements 

same as those of a renormalized operator, periodic in canonical variables i‘, ,6’, with a 
renormalized commutator [i‘, FJ = ?fit. The renormalized operator is related to the original 
by a linear transformation of the Fourier coefficients defined in (1.6). 

Section 6 studies the effect of a 1112 rotation of the Hamiltonian in phase space. For a 
particular choice of gauge (defining the relationship between the phase of rotated and un- 
rotated Bloch states), the Wannier functions I@”)) of the rotated Hamiltonian are obtained 
in terms of those of the original Hamiltonian I@,$”)). If the Hamiltonian is invariant under 
rotation, these relations are shown to imply a rotational invariance of the renormalized 
Hamiltonian. The rotational invariance depends on a surprising operator identity discussed 
in appendix B. 

Finally, section 7 summarizes the important results, and points to future work on this 
problem. 

(@&, 8) If(X, P)@,?). Section 5 shows that the matrix elements of the Hamiltonian are the 

2. Generalized Bloch states 

In this section the Bloch states of the rational case are characterized, and their extension to 
irrational ,3 is described. For clarity of presentation, and because of necessw changes in 
notation, there is some overlap between this section and 1151; the approach adopted here is, 
however, more transparent and the result in section 2.3 is entirely new. 

2.1. Bloch states obtained by sampling an analyticfunction 

When ,3 is the ratio of two integers, ,3 = p / q ,  Harper’s equation has a translational 
invariance corresponding to increasing n by q.  In this ‘rational’ case, Bloch’s theorem is 
applicable and the eigenstates are Bloch waves, with a Bloch wavevector k: 

@,, = e p(ikn)U.(k, 6) U#+* = U,. (2.1) 

The eigenvalues form q non-overlapping bands, with dispersion relation Ev(k, 6). where the 
index U = I , .  . . , q labels the bands. The eigenstates are periodic, up to a complex phase, 
in both k and 6, with periods 2z/q and 2np/q, respectively. It will be useful to represent 
the Bloch states by means of Dirac bra and ket vectors; the ket vector, IB,(k. 6 ) )  will be 
used to represent the Bloch state in the uth band with wavevector k and phase parameter 6. 
The Bloch states are only defined up to a multiplicative complex phase factor eie(k.6). It is 
possible to choose the phases of the Bloch states such that they are an analytic function of 
the parameters k and 6. It may not, however, be possible to choose the phases so that the 
Bloch waves are periodic on the Brillouin zone. The states can always be made precisely 
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periodic in 6,  but states separated by the period of the Brillouin zone in the k direction may 
differ by a phase factor: 

lBdk + 2 n / q ,  6)) = exp[ix(6)11Bv(k, 6 ) )  

IBdk 6 + 2nP/q ) )  = IBdk 6)). (2.2) 

Because of the periodicity in 6, x(6 + 2 n p / q )  - ~ ( 6 )  = 2nM, for some integer M y .  The 
integer M, is termed the Chern character of the fibre-bundle formed by the Bloch states, 
and the quantized Hall conductance carried by the vth band is U$) = M,e2/h [Z]. It will 
be convenient to choose the phase x(6) as follows 

~ ( 6 )  = MuqslP. (2.3) 

If the Bloch states are an analytic function of 6, the amplitudes $* defining the Bloch states 
can be obtained by sampling an analytic function $&; k) :  

$" = $,(x,; k )  x, = 211,571 + 6.  (2.4) 

The Bloch states produced by this construction are clearly periodic in 6. For consistency 
with (2.1), the function $" (x ;  k )  is a Bloch function: 

(2.5) 

Harper's equation is unchanged under the transformations 6 + 6 + 2 n / q ,  n --t n - An, 
where An satisfies p A n  + 4 A m  = 1 for some integer Am. This implies that, with an 
appropriate choice of phase of the Bloch waves, U& + 2 n A m ;  k )  = U&; k ) .  Comparing 
this with (2.5), it is clear that, with a suitable choice of phases, 

(2.6) 

When (2.6) is satisfied, the following representation for the function $&; k )  can be used 

$"(x;  k )  = e"x'2nflU,(x; k )  U,(X + 2np; k )  = u,(x; k ) .  

U& -I 2n; k )  = U&; k) .  

m 
$"(x; k )  = an(k)e'(k+*)*/h 

n=-m 
(2.7) 

where A 2 a g .  Equation (2.7) can also be written in the form 
m 

~ L G  k )  = CW..(~)) I M ~ ) )  = a.(k)Ik+nh) (2.8) 
n=-m 

where Ik) denotes an eigenstate of the momentum operator: i = -&$, i l k )  = k l k ) .  

are related by (2.4), the phase in (2.2) depending on 6 becomes a phase depending on x :  
We now consider how to make (2.8) consistent with (2.2) and (2.3).  Because x and 6 

! M x ;  k + 2nIq) = ex~[iqM,x/pl$~(x; k ) .  (2.9) 

From (2.9), shifting k by 2 n / q  increases the momentum k of the state by M , q A j p  = ZnM,: 
therefore 

(2.10) 

To summarize: equation (2.4) relates the amplitudes $n to an analytic function $&; k). 
The Bloch wave property of $ " ( x ; k )  = (x l$ , (k) )  and the periodicity in k are described 
by (2.8) and (2.10). respectively. 
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2.2. Generalized Bloch states 

It will be useful to define generalized Bloch states for which j3 need not be a rational 
number. Generalized Bloch states can be defined which are periodic (up to a phase) in a 
Brillouin zone of size A6 = h in the 6 parameter, and Ak = K ,  in the k parameter (where K ,  

will be determined shortly). The generalized Bloch states are defined by a set of amplitudes 
@,, which are obtained by sampling the continuous function @ ” ( x ;  k )  as prescribed by 
(2.4). When j3 is irrational, the form a quasiperiodic rather than a periodic sequence. 
Equations (2.5)-(2.8) continue to be valid for the generalized Bloch states. Equations (2.9) 
and (2.10) must be replaced by 

and 
m 

I@dk  + K ” ) )  = a,(k)lk + nh + 2xMJ  
n=-m 

indicating that the periodicity of the Brillouin zone in k is now K , .  
The value of K. can be determined as follows. From (2.8), 

(2.12) 

and consistency between (2.12) and (2.13) therefore requires 

K, = 2 z M ,  + N,h (2.14) 

for some integer Nu.  
It is desirable to define generalized Bloch states which approach the Bloch eigenstates 

in the limit ,5 -+ p / q :  this requires that K” + 2x/q in this limit, and (2.14) therefore 
implies that N ,  satisfies 

1 = q M ,  + pN. .  (2.15) 

The gap labelling theorem [27] and the Stieda formula [28] imply that a solution of (2.15) 
exists for which N ,  is an integer. 

In the limit j3 + p/q,  the generalized Bloch states resemble the usual Bloch states, 
but with a slowly varying value of the phase parameter 6. These states may be useful as a 
basis set for expansion of an eigenstate of the Hamiltonian, Born-von Karman boundary 
conditions are applied to a finite number N, of n values, the values of k are restricted to 
be multiples of 

Ak = 2x/N,. (2.16) 

The values of the phase parameter 6 will also be assumed to be quantized, so that it takes 
Ny discrete values 

6=lh/N,  l = 1 ,  ..., Ny. (2.17) 

This corresponds to considering the problem of Bloch electrons in a magnetic field on a 
finite-sized rectangular lattice, with a total of N,N, states in the Landau level [U]. In [I51 
it was shown that the generalized Bloch states have the correct density of states to form a 
complete set for a band of the spectrum when ,5 is irrational. 
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2.3. Representation of Bloch waves using normalizable functions 

It will be useful to represent the generalized Bloch states in terms of a set of normalizable 
functions instead of the Bloch functions @&; k) .  It will now be shown that the function 
( rv (x ;  k )  can be generated from a set of exactly Nu normalizable functions. In section 3, 
these functions will be associated with a set of Wannier states I@)), p = 1, . . . , N v .  

Comparison of (2.12) and (2.13) gives a recurrence relation connecting the functions 
a,@): 

an(k) U n - N , ( k  -I- K v ) .  (2.18) 

A solution of (2.18) can be obtained in the form a,&) = F(k + an): it is found that 
a = K”/N”> i.e. a,(k) = F(k 4- K , ~ / N , ) .  Only coefficients a,, with values of n separated 
by Nu are related by (2.18). A set of N ,  different functions are therefore required 

a,N,+,(k) = Ff’ (k  -k n K v )  Ir. = 1 , .  . . , Nu. (2.19) 

This shows that the set of functions u.(k) can be generated from Nu normalizable functions 
F,!”) ( k )  . 

3. Generalized von N e w ”  lattices 

In this section, it will he shown that the generalized Bloch states can be obtained from 
a set of Nu overlapping generalized von Neumann lattices. This will be derived from an 
alternative representation of the Bloch states. 

3.1. A new representation of the Bloch stafes 

In section 2, the generalized Bloch states were regarded as being defined by a discrete set 
of coefficients In this section, another viewpoint will be adopted: the generalized Bloch 
states will be regarded as a set of functions on the real line, of the form 

m 

( x ~ B , ( ~ , s ) )  = $ J ( X - X . )  x , = n f i + ~  (3.1) 
n=-m 

where & x )  is a suitably defined delta function, and @n = (ry(xn;  k ) .  Note that this 
representation is very closely related to the k-q representation [29]; the difference is that a 
plane wave eikx in the k-q representation is replaced by a Bloch wave @&; k) .  

To simplify the discussion of the definition and normalization of &x), it will be assumed 
that 6 takes Ny discrete values given by (2.17), and the relationship between the states 
IB,(k, 6)) and I+,(k)) will be defined as follows 

N” 

where f(X, P) is the phase-space translation operator (1.4). Note that, according to (3.2). 
6 behaves as a Bloch wavevector for translations along the momentum axis in phase space. 
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According to (3.1). the overlap between two of the generalized Bloch states, lB,(k,  6) )  
and IB,.(k', 6')) ,  should vanish if 6 p #mod E .  It will be instructive to verify this explicitly: 

P"@', ""(k 6)) 

The summation variables m and m' in (3.3) can be replaced by 

j = m - m '  .I= (y) (3.4) 

It will be assumed that the matrix element in the right-hand side of (3.3) decays very rapidly 
as ljl = Im - m'l -+ 00. The summations in (3.4) will be replaced by a sum over j from 
-00 to 00, and a sum over Ny values of I, taking integer values if j is even, and half- 
integer values if j is odd. For a sufficiently rapid decay of the matrix elements, the error 
incurred by altering the summations is O(l/Ny) 

x ~ e x p [ - 2 n i J ( S ' -  6 ) / h ]  + O(l/My). (3.5) 
I 

It is useful to define the symbol A(6 - 6') as follows 

where the second equality holds if the values of 6 and 6' have the discrete values given by 
(2.17). Note that the symbol A(6-6') is really a version of the Kronecker delta symbol, with 
the arguments represented as real variables, discretized by (2.17), rather than as integers. 
With this definition, the final expression is 

x f ~ ,  2rj)1tlr,(k)) (3.7) 

where 6 - 8' = Nh, and, in this and subsequent expressions, the O(l/N,) error term is 
dropped, because only the limit N, + CO is required. ?he term ( -I)Nj arises because, 
when j is  odd, the summation in (3.5) is over half-integer values of J .  This result confirms 
the orthogonality of states with different values of 6. 
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3.2. Generalized von N e u m n  lattice basis 

Using (3.74, (2.8) and (2.19), the generalized Bloch state IB,(k, 6 ) )  can be written in the 
form 

(3.8) 

The states l@F)(k)) are Bloch states, with periodicity ZR/N,, and are periodic (up to aphase 
factor) in k with period K,; shifting k by K, corresponds to a boost of their momentum by 
2nM, (cf (2.12)). A set of Wannier functions will now be identified for the Bloch states 
I@F)(k)). The Bloch states can be expressed in the form of an integral 

” 

J@$’)(k)) = / dk’d(k’ - k  - (nN, + p ) h ) F , ) ( a k ‘ +  y)lk’). (3.9) 

Comparing with (3.8). (Y and y must be chosen so that ak‘ + y = k + nKu when 
k‘ = k + (nN,  + p)A: this gives (Y = K,/N,A, y = - ( K V p R  + 2nM,k),”,h. Now 
the Poisson summation formula will be used to re-write the sum of delta functions in (3.9): 

n=-m -m 

m 2 S(k‘ - k - (nN,  + p)h)  = Z!. exp[2nim(k’ - k - ph) /N,hl .  (3.10) 
n=-m Nvh m=-m 

Using this result, (3.9) can be rewritten in the form 

Noting that the momentum eigenstates Ik) satisfy f ( X ,  0)lk) = e-iXkfijk), equation (3.11) 
can be written in the form 

-1 

Nuh m=-m 
~@:)(k)) = - exp[-2xim(k + P A ) / N , A J ? ( - z H ~ / N , ,  o)I@)(~)) (3.12) 

where 

(3.13) 

The states l$F)(k)) clearly have a localized wavefunction if the F f ) ( k )  are analytic 
functions. Equation (3.13) implies that the state I@’)(k)) is a type of Wannier function, 
from which the Bloch wave [ @ t ) ( k ) )  can be generated. It is desirable to remove the 
k-dependence of the Wannier functions. This can be achieved by writing 

I$t)(k)) = f ( 0 .  Zj’CM,k/KdI@)Y)) 

(3.14) 
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Combining (3.14), (3.12) and (3.8) gives the following representation of the IB,(k, 8)) states: 

X p(0,  2Irt?2)f(-2Hn/Nv. o) f (o .  ' h ? r M y k / K y ) l @ F ) )  (3.15) 

where C is a normalization constant. The generalized Bloch states can therefore be formed 
from a set of N ,  overlapping generalized von Neumann lattices, generated by applying 
phase-space translation operators to a set of N ,  generalized Wannier functions I@!)). If the 
Wannier states I@,$')) are suitably normalized, the normalization multiplier in (3.15) can be 
written 

C = (NZNy)-'''. (3.16) 

Note that, except when Nu = 1, the von Neumann lattices of states in (3.15) are denser 
in the X direction than the P direction and, when M, is non-zero, the states move in the P 
direction as the wavevector k in the X direction increases. Physically, this movement can 
be interpreted as a Hall current flowing in response to a weak electric field, represented.by 
an adiabatic variation of the wavevector [25.30]. The symmetry of the original phase-space 
Hamiltonian (1.2) is therefore completely lost at thii point in the analysis. except for the 
special case when N ,  = 1 and M, = 0 (which only occurs if p = 1). 

4. Matrix elements of translation operators 

4.1. Evaluation of matrix elements 

The Hamiltonian 8, and other operators of interest such as projection of the Hamiltonian 
of the form 1; = f (8) (where f ( x )  is a suitable smooth function [15]), can all be expressed 
as a superposition of phase-space translation operators f ( N A ,  Mh), such as (1.6). In this 
section, matrix elements of these translation operators will be evaluated in the basis of 
generalized Bloch states IB,(k, 8)). 

Using representation (3.15): 

( B d k ' ,  s')If(X, P)IBdk, 8)) = lClz 
N. N. 

2 
&'=lp=l " m 0' n 

1 
where f is a product of translation operators 

f = ?CO, -2nM,k'/K,)?(2nn'/N,,  O ) f ( O ,  -2xm')?(X, P)?(O, 2nm) 

X + ( - 2 a n / N , ,  o ) f (o ,  2HM,k/K,) (4.2) 
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which can be evaluated using (1.5) as follows 

?(-&T(n - &/Nu + X, 2n(m - m') + 2nM,(k - k ' ) / K y  + P )  (4.3) = ,io 

with 

(4.4) 

In (4.1). it is convenient to sum over the variables 

m t m '  
2 '  l = n - n '  L = -  j = m - m '  J=- (4.5) 

n +n' 
2 

Transforming the sums in the same manner as the transformations leading from (3.3) to 
(3.5), specializing to X = N h ,  P = Mh, and using (4.4) and (4.5) gives 

(Bu(k ' , 6 ' ) [ f (Nh ,  Mh)lB,(k,6)) = ICI2~exp[-Zni (6  - 6'+  Nh)J/hl  
I 

x x e x p  [-? (y) j ]  
I 

I N .  N ,  
x x x e x p  [ - z ( k  - k' + 2nj + (p - pr + M ) h ) L  

p'=l p-1 L 

xexp [ -- ;vi (!-l; - p') i] 

x (4:)[?(-2nl/Nu + N h ,  2 n j  + Mh + 2zM,(k - k ' ) / ~ ~ ) l 4 ; ) ) ,  (4.6) 
The sums over the dummy indices J and L are only non-zero if, respectively, the following 
two conditions ate met: 

6 - 6' + N h  = Omodh 

k - k ' + 2 n j  + (p  - p'+ M)h = OmodN,h = N'N,h (4.7) 
for some integer N'.  Provided both 6 and 6' ate in the range 0 to h ,  as implied by (2.17), 
the matrix elements can therefore be written in the form 

(B,(k', S ' ) I f ( N h ,  Mh)lB,(k, 6 ) )  

x A ( k  - k' -I- 2nj 4 ( p  - p' + M - N'N,)R) exp[-Zni6j/h] 

x ( @ ~ ) I f ( - Z n m / N " +  N h ,  -2n(np+ M,l)+ Mh +2nM,(k- k ' ) / K v ) l @ f ) )  

(4.8) 
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where A ( x )  is defined by (3.6), and the factor (-l)Nj+N’‘ takes account of the fact that the 
sums are over half-integer values of J and L when, respectively, j and I are odd. Also, 
(2.15) has been used to simplify the argument of one of the complex exponentials. 

Condition (4.7) can also be written 

k - k’ = I K ”  + n A k  

A k  = 2n:p - q h  (4.9) 

where I and n are integers (distinct from the dummy integers used in summations in some 
earlier expressions). Comparing (4.7) and (4.9). 

- j = M , l + n p  N’N, = p - @ I +  M - n q  + l N v  (4.10) 

and using (2.15), 

(4.11) 

This shows that, provided 2n: and fi are not rationally related, the summations over n and I 
cover N ,  times as many values of k - k‘ as the summations over j ,  N’.  Varying p‘ in (4.7) 
between 1 and N ,  multiplies the number of distinct values of k - k‘ by N,. The summations 
over j ,  N‘ and p’ in (4.8) can therefore be replaced by summations over n and I .  Making 
this replacement, changing the summation variable m to m - M,N, and renaming a dummy 
index gives 

(B,(k’ .  8 ’ ) I f ( N h ,  M h ) l B , ( k . 8 ) )  = A(8 - 8’) 2 ” A ( k  - k‘,- 1 ~ ”  - n A k )  
n=Col=-m 

(4.12) 

where 

x (@[f(-21r(m - N M , ) / N ,  + N h ,  -2ir(np + MJ) 
+ M h  + 2n:Mu(k - k’)/Kv)l#F)) (4.13) 

and 

p’ = (p + M - nq) mod Nu. (4.14) 

Equation (4.12) shows that the matrix elements are in the form of a difference operator in 
the k variables, with coefficients which are periodic with period K , .  Equation (4.13) gives 
the mth Fourier coefficient of the term-coupling wavevector k to k’ = k +nAk .  in terms of 
the matrix elements of the localized states 14:)). 
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4.2. A more symmetric expression for the Fourier coeficients 

The formula for the Fourier coefficients (4.13) which defines the matrix elements will now 
be written in a more compact and symmetric form. Using (2.14), (2.15) and (4.9) to simplify 
the arguments of the translation operator in (4.13), and using (2.15) to simplify the phase 
factors gives: 

X (@;)1?((-27fm + NK,)/N,, (-27Cn + M K v ) f i / K v ) / @ ; ) ) .  (4.15) 

This result can be further simplified by introducing operators ?(AI,  hz) which are defined, 
for integer values of hl and A?, by the relation 

'?e operators $AI ,  Az) are clearly analogous to the phase-space translation operators 
T ( X ,  P) in that they have the same type of non-commutative algebra: 

(4.17) 

Also, note that the ?(A,, Az) operators commute with the phase-space translations f ( X ,  P). 
Making use of definition (4.21), the coefficient can be written in the form 

N" 

LL-I 
TI/* NM = (-1)p"VCmM-qnm) ~(@pl%Pl@p)  

emM = f ( M  - nq.  N - m9)?((-2Trm + NK,)/N,, (-2x12 + M K v ) ? l / K v ) .  (4.18) 

Note that the coefficients T!: can all be obtained from a set of N," functions W,!,")(X, P), 
defined by 

N" 

p=l 
W,!:!(X, P) = c(@Fy)I i ( n ,  n ' ) f ( X / N , ,  Ph/K,)l@;'). (4.19) 

In terms of the functions W,$?[X, P), the coefficients 7AM can be written in a form in 
which the pairs of integer labels N ,  M and n,  m appear in a symmetric pattem: 

(4.20) 7nm NM = (-l)p(nN+mM-Ynm) w;:;,cx, P) 
with 

n , = M - n q  n p = N - m q  

X = -2irm + NuV P = -2xn + MK". (4.21) 

It is surprising that the arguments of the f(X, P) operator in (4.19) should have to be 
multiplied by different factors in order to obtain (4.20) in this symmetric form. This 
asymmetry in the definition of Wii!(X, P) suggests that it may be difficult to make it 
reflect a four-fold symmetry of the crystal lattice. This apparent difficulty is resolved in 
section 6 .  
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5. Renormalization-group transformation 

5.1, A renormalization-group mapping of operators 

In section 4, i t  was shown that the matrix elements of the Hamiltonian (I.@, when expressed 
in terms of the generalized Bloch states, are in the form of a difference operator in the k 
variable, with step length Ak and with periodic coefficients with period K". This new 
representation of the Hamiltonian is therefore very similar to the original Harper's equation. 
In this section, it will be shown that the matrix elements are equivalent to those of a 
'renormalized' Hamiltonian of the form 

where 

[i', 8'1 = ifi' ?I' = 2np' = 2Rhk/K,. (5.2) 

Because the allowed values of S (specified by (2.17)) satisfy 0 c 6 < f i ,  the matrix elements 
(4.12) are only non-zero when S = 8'. The k values will be considered to form a continuum 
from -CO to 03, but only values 0 < k 6 K, are physically distinct, When expanding a state 
in terms of the IB,(k, 6 ) )  basis, only values which are related by (4.9) are required, since 
only these values are coupled by the Hamiltonian. Moreover, only states with differing 
values of n are required, because states with k differing by multiples of K" are physically 
equivalent: for this reason only the case where 1 = 0 in (4.12) is required. 

Accordingly, attention will be restricted to a subset of the generalized Bloch states 
where k = ko + nAk (and n is an integer). If 2n is not rationally related to A, it is useful 
to make a phase transformation of these states: 

Ix.) = exp[2niSpn/AllBV(ko + nAk. 6 ) ) .  (5.3) 

When A is rationally related to 2n,  this set of states is closed, and (5.3) would be inconsistent 
in that it would equate a state to a multiple of itself which would typically be different from 
unity; for this reason the subsequent discussion of this section is specific to irrational values 
of p. Using (4.12), the matrix elements of the translation operator f N M  = f(NA. M f i )  are 
then 

Note that the choice of the phase transformation in (5.3) makes (5.4) independent of 6 .  
The matrix elements (5.4) will now be compared with those of the operator 

in the basis of eigenstates of X I .  These matrix elements are 

(5.5) 
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Now restricting attention to the subset of I x ' )  states IxA) = Ix; + nh'). the non-zero matrix 
elements in (5.6) are 

If h' is identified with 2rrAk/~,, and xh with ko/Kv, these matrix elements are exactly the 
same as those in (5.4). The original translation operator ?NM is therefore renormalized into 
a sum ihM of translation operators ?Lm, with a renormalized Planck constant h'. The same 
reasoning holds for any operator such as Hamiltonian (1.6) which is a sum of the translation 
operators ? N M .  The renormalized Hamiltonian (5.1) is therefore specified by the Fourier 
coefficients 

5.2. Simple results for the renormalization-group coeficients in the rational limit 
It is difficult to write down general results for the coefficients rAM in (5.8) which define 
the renormalization-group transformation. In the rational limit h + 2lrpjq however, these 
coefficients satify some simple relationships. 

In the rational case p = p / q ,  the generalized Bloch states reduce to exact eigenstates, 
and the matrix elements of H are, using (4.12) and setting l = 0, Ak = 0: 

(5.9) 

'where &"(k> 6) is the dispersion relation for the uth  band, which has Fourier coefficients 
&$, Comparing (5.8) and (5.9), it is clear that the set of coefficients fig defining the 
renormalized Hamiltonian therefore approach the Fourier coefficients &$ of the dispersion 
relation in the rational limit, and that this gives a sum rule for the coefficients r,",": 

H"") nm = 2 2 HNMrLM --f &E (5.10) 
N = - m  M=-m 

in the limit h + 27rp/q. Similarly, in the rational limit. the Bloch states are orthogonal 

(Bv(k ' ,  G')jB,(k, 6 ) )  = A(k - k')A(S - 6')8"", (5.11) 

implying that 

r,", + ~ ~ 0 8 ~ 0  (5.12) 

ash + 2np/q. By considering matrix elements of integer powers of 8, it is also possible 
to derive further sum rules analogous to (5.10) relating the coefficients rAM to Fourier 
coefficients of the dispersion relation. 

The two results (5.10) and (5.12) were obtained less formally in 1151. It follows directly 
from these results that the renormalized Hamiltonian is obtained from the dispersion relation 
&,(k, 6 )  by a Peierls substitution. 
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6. Rotational symmetry 

The symmetry between P and $ of the Harper Hamiltonian is obscured in the Wannier 
function representation of the Bloch states (3.15). This is a necessary feature of the 
construction of these states, because it is desirable to keep the Bloch states strictly periodic 
in at least one of the Bloch wavevectors ( k ,  S), and if the Chern number M, is non-zero 
the periodicity must be lost in the other variable. The aim of this section i s  to consider 
the effect of a n/2 rotation in the phase plane on the lB,(k,  6)) states, and to calculate the 
transformation of the Wannier functions I#!)) generated by this rotation. It will be shown 
that, provided the phases of the Bloch states are chosen to satisfy a particular condition, the 
function Wi:!(X, P) defined by (4.19) is symmetric under rotations if the Hamiltonian also 
has this symmetry. 

6.1. Rotation of Bloch states 

The operator describing a 11/2 rotation in the phase plane is the Fourier transfoq operator 
(with an additional scaling by a factor of h) .  This operator will be denoted by R :  

This operator rotates phase-space translation operators by a/2 

M ( X ,  P) = f ( - P ,  X)k .  (6.2) 

Now consider the effect of applying the rotation operator to a ‘Bloch eigenstate IB,(k, 6 ) )  
in the rational case. Clearly 

&&Bdk, 6 ) )  = &(k,6)kIBV(k,  6))  (6.3) 

where GR = R H R - ’  is an operator which can be obtained from fi by rotating the arguments 
of all of the component translation operators by n/2. The state klB,(k, 6 ) )  must, therefore, 
be a linear combination of Bloch eigenstates of the rotated Hamiltonian f ? ~  with the same 
energy &,,(k, 6 ) .  The case where f i ~  = f? will be of particular interest. 

Instead of considering the effect of a rotation on a single Bloch eigenstate, the effect 
of the rotation operator on a particular linear combination of Bloch eigenstates will be 
analysed: this linear combination is of the form 

* - A  

(6.4) 

It will be shown that 

kIS,(k, 6)) = lB:R)(k’,6’)) (6.5) 

where p’:RI(k, 6)) is obtained by a gauge transformation from the Bloch state IB,”)(k, 6 ) )  
of the rotated Hamiltonian f ? ~  

lB$R)(k, 6)) = eieck.’)lB!R’(k, 6) )  (6.6) 
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and the transformation of the Bloch wavevectors k and 6 ,  induced by the rotation operator, 
is 

k' = 6 S'= -k. (6.7) 
The effect of the rotation operator on the sum of Bloch states IS& 6 ) )  defined by (6.4) 
is therefore to produce a single Bloch eigenstate [BL@)(k', 8')) of the rotated Hamiltonian 
&. The transformed Bloch wavevectors are related by a n/2 rotation in the Brillouin zone 
(6.7), and the phase of the rotated Bloch states differs by a gauge transformation (6.6) from 
Bloch states of the standard form (3.15). 

It will now be verified that RIS,(k,S)) is a single Bloch state. Specializing (3.15) to 
the rational case (?I = 2np/q ,  K. = 2n/q), and splitting the sum over n into a double sum 
over n' and p', with n = Nun' + 1': 

c p  
IS,(k. 6) )  = - ~ e x p [ - i q m ~ / p l e x p [ - 2 n i m j / p l ? ( O ,  2nm)  

f i  j=1 m 

x ? ( - 2 ~ f i ,  0)f(-2np'/NU, O)?(O, qM,k)l@f)) (6.8) 

where C is the normalization factor (3.16). This state vanishes except when m is a multiple 
of p. Using (1.5) and (2.15) to commute translation operators and simplify phase factors, 
and renaming the dummy indices, this reduces to 

(6.9) 

where 
N .  

& k l  
1x2)) = f i f ( -2xp/Nv,  0) exp[-2nipp'/N,]I~~)). (6.10) 

Applying the rotation operator to this state gives (using (6.2)) 

(6.11) 

where 
N" 

+I 
IQ?)) = f i ? ( O ,  -2np/N,) exp[-2itipp'/Nvl~1@$)) (6.12) 

and k' and 6' are given by (6.7). The summation over m plays the same rijle as that in 
(3.2). indicating that the wavefunction of this state is zero except at positions x, = nR + A ' ;  
also, k' is clearly a Bloch wavevector. This state is therefore a Bloch state of the rotated 
Hamiltonian, similar to the standard form (3.13, and differing from it  by at most a gauge 
transformation. 
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6.2. An alternative Wannier function representation 

In the previous subsection, it was shown that a Bloch wave can also be represented in the 
form (6.11). This is an alternative representation to (3.15) in terms of a different set of 
Wannier functions 14;)): 

IBL(k, 6)) = C Eexp[-iq6m/pJf(O, 2rrm) Eexp[-iqknJf(-2apn, O)f(qMyS, 0) 
m n 

(6.13) 

The periodicity of this new representation of the Bloch states is described by the relations 

IBb(k + %/q, 6 ) )  = IB:(k 6 ) )  

IBl(k, S + 2np/q)) = exp[-iqM,klIB:(k, 6 ) )  (6.14) 

which is different from the periodicity properties of the previous Wannier function 
representation (3.15) (cf (2.2) and (2.3)): 

IBdk + 2 x / q , W  = exp[iqMJ/~l lBdk.  6 ) )  

IB”(k, 6 + 2np/q)) = IBdk, 6)). (6.15) 

The phase B(k, 6 )  appearing in gauge transformation (6.6) therefore satisfies the equations 

B(k+2a/q,6)-B(k,6) = -qMuk 

B(k, 6 + k p / q )  - B(k. 6) -qMd/p.  (6.16) 

The solution of these equations is of the form B(k, 6) = a k a  + ~ ( k ,  S), where ~ ( k ,  6) 
is periodic with periods Ak = A6 = k / q  and, by inspection, the coefficient of k6 is 
[Y = - q 2 M U / k p .  The phases of the Bloch waves will be chosen so that the following 
condition is satisfied: 

IB’F’(k, 6)) = e ~ p ( - i q ~ M , k 6 / 2 a p l I B ~ ~ ) ( k ,  6 ) ) .  (6.17) 

Note that, given a choice of gauge for the IB,(k, 6 ) )  states, this relationship defines, via 
(6.4) and (6.5), the phase of the lBF)(k, 6)) states, 

6.3. Rotations of Wannier functions 

Two expansions for Bloch states in terms of Wannier functions have been given, which will 
be termed type I (defined by (3.15)), and type ll (defined by (6.13)). Equation (6.12) gives 
the type ll Wannier functions of the rotated Hamiltonian & in terms of the type I Wannier 
functions of fi. Now the type I Wannier functions of the rotated Hamiltonian I$f”’) will 
be determined in terms of the unrotated set I$”:”’). The result will be expressed as a rotation 
operator for the set of Wannier functions. 

Appendix A gives a formula for the type I Wannier functions I@)) in terms of the 
Bloch states IB,(k, 6)). The approach will be to use this formula with the Bloch waves 
IB:*)(k, 6)) obtained from gauge transformation (6.17) of the IB$R’(k, 6)) states: the latter 



Generalized Wannier junction and Harper's equation renormalization 8 14 1 

will be expanded in terms of the type II Wannier functions, which are given by (6.12). 
Combining (A.4) and (6.17) gives 

x Lk" dk LbP" d8 exp[iqkp'l exp[iq2Muk8/2npJ 

x f ( 0 ,  -qM,k)lB:'R'(k, 6 ) )  (6.18) 

and the Bloch states of the rotated Hamiltonian are obtained by substituting (6.12) and 
(6.13) into (6.18). Using a result (B.3) proved in appendix B. this can be written 

where .?(q) is a unitary operator which stretches the x axis by a factor of q 

( X l m I ? H  = .J;i(vxl@). (6.20) 

Commuting a pair of f operators, a?d using (6.2) and (B.9) to commute all of the f 
operators to the left of the S and the R ,  this reduces to 

(6.21) 

The sum over p' vanishes unless qh + !.L = Omod N,; using (2.15) this condition can also 
be expressed as A = -Mop mod Nu, so that 

The rotation operator for the type I Wannier functions is therefore a composition of a phase- 
space rotation, a stretching and a discrete Fourier transform acting on the p labels. It will 
be convenient to introduce an operator i for this discrete Fourier transform: 

(6.23) 

Note that the operator i acts on a set of states (I@e), /L = 1, . . . , N u ]  rather than upon a 
single state. With this notation, (6.23) can be written 

I q ' )  = S(pN,)Wil@&y).  (6.24) 

The composition of three operators in (6.24) is a rotation operator for the set of Wannier 
functions. Note that this form for the rotation operator depends on the phases of the Wannier 
functions oeing chosen so that (6.17) is satisfied. 
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6.4. lmplicafions of rotational symmefry: the rational case 

If the Hamiltonian has rotational symmetry such that I? = &, then the rotated Bloch 
states must be equal to the unrotated states, up to a phase. In appendix C, it is shown 
that there exist gauges for which the rotated and unrotated states differ by a fixed phase 
B(k, 6) = aL/2,  where L is an integer. In the following considerations, it will be assumed 
that such a choice of gauge has been made. This implies that the rotated Wannier functions l@rv)) must be identical to the I@:') set, apart from a phase factor: 

I@')) = iLS(pN,)i(A,)f@). (6.25) 

In this equation the fact that the rotation operator k depends on h has been shown explicitly, 
and for the rational case we set A = ho = 2 z p / q .  It will now be shown that this implies 
that the function WAi!(X, P) defined by (4.19) has rotational symmetry in the rational case. 

As a preliminary, consider the commutation of operator ? defined in (6.23) with the 
translation operator ?(n, n') defined by (4.16): 

iF(n, n') = +n', E)? .  (6.26) 

Note that this is analogous to commutation rule (6.2) for the A? and f ( X ,  P) operators. In 
the rational case, the function WLi!(X. P) is given by setting h/Kv = p in (4.19). substituting 
(6.25) into (4.19), and using (6.2), (6.26) and (B.9) to commute operators: 

N" 

I r = I  
= C ( ~ ~ ) l i ( - n ' , n ) f ( - p / N , ,  x ~ ) I @ )  = w?~,,c-P, x). (6.27) 

This result implies that, provided the phases of the Bloch states are suitably chosen, the 
function WLi!(X, P) has exact rotational symmetry in the rational case, under a combined 
rotation of the n,  n' and X, P variables. Comparing with (4.20) and (4.21). this implies that 
the renormalization coefficients r,"," satisfy the symmetry relation T;,?: = rLM. From 
(5.8), i t  is clear that this symmetry ensures that the symmetry of the Fourier coefficients of 
the Hamiltonian H-M,N = H N M ,  is also found in the Fourier coefficients of the renormalized 
Hamiltonian: &"A,,, = H':;. A four-fold rotational symmetry of the classical Hamiltonian 
(or other operator) is therefore preserved by the renormalization-group transformation i n  the 
rational limit ft + 27rp/q. 

6.5. Presentation of rotational symmetry in the irrational case 

The four-fold symmetry of W;:!(X, P) can also be preserved in the irrational case by a 
suitable modification of the Wannier functions. 

If @ is irrational, the translation operator in (6.27) is replaced by f(X/N,. PA/K~). It 
is easy to verify that this symmetry relation would continue to hold if the Wannier functions 
satisfied the transformation law 

I@:)) = i ' S ( h ~ u / ~ v ) i f ~ @ ~ ) .  (6.28) 
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Given a set of Wannier functions for the rational case satisfying (624 ,  a set of states I@”)) 
satisEling (6.28) can easily be generated by scaling them by a factor q: 

I@?)) = h ) l P )  I r ’  (6.29) 

Note that the rotation operator satisfies 

k ( h )  = .?(fio/h)kfio) (6.30) 

which follows from the definitions (6.1) and (6.20). Requiring that I$)) = ,?+(q)@’)) 
satisfies (6.25)’ and using (6.30) and (B.lO), the required scaling factor is found: 

v = v m z .  (6.31) 

Note that this approaches unity when @ + p / q .  If the Wannier functions are re-scaled 
according to (6.29) and (6.31), the functions Wj:!(X, ’P) are transformed as follows 

W;:!(X, P )  --f w~$’(x, P )  = x(@’)$(n,  n’)F(X/N,,  P ~ ~ / K ~ ) I @ $ ) )  
NU 

IL= I 

N” 

p= 1 
= ~ ( @ ) l ~ t ( q ) f ( n ,  n ‘ ) f ( X / N , ,  Ph/~J ,?(q) l@)  = Wj:!(qX, q’P). (6.32) 

In order to preserve a four-fold symmetry of the Hamiltonian in the renormalization-gmup 
transformation, the phases of the Bloch waves should be chosen according to the prescription 
in appendix C. The function Wi:!(X, P) then has the correct symmetry in the rational case. 
In the irrational case, the arguments of this function should be scaled with the factor q,  as 
prescribed by (6.31) and (6.32). 

7. Summary and discussion 

This paper has been concerned with the definition of a generalized Bloch basis for Harper’s 
equation, and with the evaluation of matrix elements of the Hamiltonian in this basis, 
showing that they are the same as the matrix elements of a renormalized operator. It is a 
more refined and formal version of arguments presented in [15]. The new results conrained 
in this paper are summarized below, and the important formulae are enumerated. 

A significant new result, introduced in section 2, is that the generalized Bloch statq 
can be generated from a set of N ,  normalizable functions F t ) ( k ) ,  where N u ,  defined by 
(2.15), is the gap labelling integer conjugate to the Hall conductance integer M,. In section 
3, it was shown that these normalizable functions can be used as a set of Wannier functions 
I@)) for a von Neumann lattice representation of the Bloch states. This von Neumann 
lattice representation is inherently anisotropic (except for the special case where Nv = 1 
and M, = 0, which was treated in [ 141). This anisotropy is a source of severe difficulty 
in setting up a version of the renormalization-group transformation which preserves the 
four-fold symmetry of the Hamiltonian. 

An explicit formula for the matrix elements of translation operators in the basis of 
generalized Bloch states (4.12) is derived in section 4 and, in section 5, this is used to 
obtain the Fourier coefficients which characterize renormalized operators. After a long 
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calculation, these Fourier coefficients are expressed in terms of matrix elements of the form 
(@,!“)lf(n, n’ ) f (X /N , .  P h / ~ J l + t ) ) ,  where F(n, n‘) is a translation operator acting on the p 
labels. The final formulae for the Fourier coefficients, (4.18) or (4.20) and (4.21), are quite 
simple and symmetric in form, but they do not respect the isotropy of the lattice because 
the arguments of the operator f ( X ,  P) are scaled by different amounts. 

Section 6 considered the effect of 7rj2 rotations of the Hamiltonian in phase space. The 
relationship of the Wannier states I@”)) of the rotated Hamiltionian to the unrotated set 
I@:)) is given by (6.24), under the assumption that the Bloch states are chosen to satisfy a 
particular gauge relationship (6.17). The rotation operator for the Wannier functions contains 
a Fourier-transform operator 2, and a discrete Fourier transform i over the p labels, both 
of which might be expected. The surprising feature of this result is that it also contains 
a ‘stretching’ operator .?(pN,). In sections 6.4 and 6.5 it is shown that this stretching 
operator cancels out the apparent anisotropy in the formulae for the matrix elements, and 
that the function W,!:!(X, P )  defining the renormalization coefficients r,“,“ can be made 
rotationally invariant. A four-fold symmetry of the Hamiltonian is therefore preserved by 
the renormalization-group transformation. 

The constraints on the choice of gauge imposed in section 2 and appendix C still do not 
give a unique choice. An exact formulation of the renormalization-group transformation 
requires evaluation of matrix elements of the projection operator for a band, and of 
the projected Hamiltonian 8, = PHP [15]. The calculation of the expansion of the 
effective Hamiltonian in powers of ,3 - p/q is complicated by the fact that the result is not 
unique: gauge transformations of the Bloch states determine canonical transformations of the 
renormalized effective Hamiltonian. This question will be treated in detail in a subsequent 
paper. 
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Appendix A. Wannier states from Bloch functions 

This appendix describes how to invert (3.15) to express the Wannier functions in terms of 
the Bloch functions. The calculation is specific to the rational case. 

First consider the state 
m 

?CO. -qM,k)lB,(k, 6 ) )  = C exp[-iqm&/plf(O, 27rm) 
m=-m 

m N. 

n=-m p=l 
x exp[-iqknI?(-Zrrn/N,, O)Cexp[-2ni/~n/N”JI~:Y)).  (A.l) 

This state is clearly periodic in both k and 6 .  It is useful to consider the following integral 
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This result relates a sum of Wannier functions to an integral over the Brillouin zone. A single 
Wannier hnction can be obtained from the lZ,L) states by performing a further summation: 

(A.3) 

Combining the above results gives an expression for the Wannier functions in terms of the 
Bloch states 

x lkIs dklhp’q d6 exp[iqk@’]f(O, -qM,k)lB,(k, 6 ) ) .  (A.4) 

This expression is analogous to the standard method for constructing conventional Wannier 
functions by means of an integration over *e Brillouin zone, and it reduces to the standard 
result when M ,  = 0 and N, = 1. 

Appendix B. An operator identity 

The operator 

6 ( k ,  6) = e x p [ i q 2 ~ , k ~ / 2 n p l  
m m  

exp[-iq(kpn + 6m)/p1 
n=-mm=-m 

x f (0 ,  Znm - q M , k ) f ( - 2 n p n  t q M J ,  0) @.I) 

is easily shown to be periodic in k and 6: b(k + b / q ,  6 )  = 6 ( k ,  6 )  = b(k, 6 + 2np/q).  
The aim of this appendix is to evaluate the Fourier coefficients of this operator: 

and to relate them to a unitary operator .?(q) which describes a dilation of the x coordinate 
axis by a factor of q:  (x lS (q ) l@)  = f i / ? ( r p ~ l @ ) .  It will be shown that, when h = 2npjq.  

To derive this result, consider the coordinate representation of ~ N M I $ )  for an arbitrary state 
I!@: 

m 
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Using the Poisson summation formula, the sum over m can be expressed as a sum over 
delta functions: 

(x16(k,  s)I@) = -- exp[iq*M,k(S - x ) / ~ l r p l  
m 

2 V  
S(X - 2npmjq - 6) 

4 m=-m 

m 

Now note that, for any function f (6): 

It follows that 

Finally, integrating over k gives 

za/q 01 

dk exp[iqkNl 2ZP 
~ N M  = -- exp[iqMx/p] 1 exp[-iknl(x - 2npn + q M , x l @ )  

4 n=-CO 
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Appendix C. Construction of a rotationally invariant gauge 

In section 6.2, it was shown that the Bloch states of the rotated Hamiltonian can be obtained 
from those of the unrotated Hamiltonian as follows 

IB;%' ,~ ' ) )  = -exp[iq2~"ks/2xalliCj~,(k,6+Znj/q)) = F & I B ~ ( ~ , ~ ) )  (c.1) 

where k' and 8' are given by (6.7), and the second equality defines the rotation operator for 
the Bloch states Re. If & = k, the rotated Blcch states must be equal to the unrotated 
states, apart from a phase factor: 

(C.2) 
where 8(k  + 2n/q, 6 )  = S ( k ,  6 )  = B(k ,  6 + 2njq). A gauge transformation of the Bloch 
states will now be constructed for which the function O(k, 6 )  is a constant, i.e. a function 
x ( k ,  6 )  will be determined such that the gauge-transformed states 

P 1 

f i  j= l  

IBS"(~, 6 ) )  = exp[ie(k,S)IIB,(k, 6 ) )  

I B ' ? ' ( ~ ,  6 ) )  = %?BIB:(-S,~)) = e x p ( i ~ o ) ~ ~ : ( k . ~ ) ) .  (C.4) 
where e, is a constant. Combining (C.2), (C.3) and (C.4) gives a relationship between the 
functions x ( k ,  6) and O(k,  6): 

(C.5) XR, 8) = ~ ( - 6 ,  k) + e(-s, k )  -e,. 
To construct the solution of this equation, the function x ( k .  6 )  is Fourier expanded 

and B(k ,  8) is expanded in the same manner with coefficients 
coefficients, (C.5) reads 

In terms of the Fourier 

Xnm = Xm.-n +Om,-,, - 6n06m000. (C.7) 
Except for the special case of xw$ the coefficient xnm is related to three other coefficients, 
xm,-", ,y-",-,,, and x-~,,, by (C.7). The choice of one of the coefficients (xnmr say) is 
arbitrary, but once this has been chosen the other three coefficients are determined by three 
iterations of (C.7). Coefficient xw is arbitrary. 

For this to be a consistent solution, a fourth iteration of (C.7) should give the original 
coefficient xnm. Clearly, this requires that the four Fourier coefficients e,,, Om,-n, e-<,-,,, 
and 

(C.8) 
This condition is satisfied if e; lB, (k .  6)}  = JB,(k, 6)) in which case the constant in'(C.8) 
is ZnL, where L is an integer. Equation ((2.8) can be verified as follows. In section 6.3, 
the Wannier functions of the rotated Hamiltonian were shown to be related to those of the 
unrotated Hamiltonian by application of an operator 

It is clear that 6; = f, where i is the identity operator. The Wannier functions of the 
four-times rotated Hamiltonian are therefore identical to those of the unrotated Bloch states, 
and the four-times rotated Bloch states must therefore be identical to the original states: 
this verifies (C.8). A solution for the gauge transformation x ( k ,  6) can therefore be found 
such that the phase change under rotation of Bloch states, defined by (C.2), is 8 = x L / 2 .  

should sum to zero for all (n,  m) except (0,O): equivalently 
B(k, 6) + e @ ,  - k )  + q - k ,  -6) t- e(-& k )  = constant. 

I?+ = ?,?(gN,)k .  (C.9) 
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